ASAP: a machine learning framework for local protein properties
نویسندگان
چکیده
Determining residue-level protein properties, such as sites of post-translational modifications (PTMs), is vital to understanding protein function. Experimental methods are costly and time-consuming, while traditional rule-based computational methods fail to annotate sites lacking substantial similarity. Machine Learning (ML) methods are becoming fundamental in annotating unknown proteins and their heterogeneous properties. We present ASAP (Amino-acid Sequence Annotation Prediction), a universal ML framework for predicting residue-level properties. ASAP extracts numerous features from raw sequences, and supports easy integration of external features such as secondary structure, solvent accessibility, intrinsically disorder or PSSM profiles. Features are then used to train ML classifiers. ASAP can create new classifiers within minutes for a variety of tasks, including PTM prediction (e.g. cleavage sites by convertase, phosphoserine modification). We present a detailed case study for ASAP: CleavePred, an ASAP-based model to predict protein precursor cleavage sites, with state-of-the-art results. Protein cleavage is a PTM shared by a wide variety of proteins sharing minimal sequence similarity. Current rule-based methods suffer from high false positive rates, making them suboptimal. The high performance of CleavePred makes it suitable for analyzing new proteomes at a genomic scale. The tool is attractive to protein design, mass spectrometry search engines and the discovery of new bioactive peptides from precursors. ASAP functions as a baseline approach for residue-level protein sequence prediction. CleavePred is freely accessible as a web-based application. Both ASAP and CleavePred are open-source with a flexible Python API.Database URL: ASAP's and CleavePred source code, webtool and tutorials are available at: https://github.com/ddofer/asap; http://protonet.cs.huji.ac.il/cleavepred.
منابع مشابه
Adaptive Skills Adaptive Partitions (ASAP)
We introduce the Adaptive Skills, Adaptive Partitions (ASAP) framework that (1) learns skills (i.e., temporally extended actions or options) as well as (2) where to apply them. We believe that both (1) and (2) are necessary for a truly general skill learning framework, which is a key building block needed to scale up to lifelong learning agents. The ASAP framework can also solve related new tas...
متن کاملASAP: A Hybrid Computer Platform Using Machine
7 The importance of real-time processing of solar data especially for space weather 8 applications is increasing continuously. In this paper, we present an automated hybrid 9 computer platform for the short-term prediction of significant solar flares using SOHO/MDI 10 images. This platform is called the Automated Solar Activity Prediction tool, or simply 11 ASAP. This system integrates image pr...
متن کاملProtein Secondary Structure Prediction: a Literature Review with Focus on Machine Learning Approaches
DNA sequence, containing all genetic traits is not a functional entity. Instead, it transfers to protein sequences by transcription and translation processes. This protein sequence takes on a 3D structure later, which is a functional unit and can manage biological interactions using the information encoded in DNA. Every life process one can figure is undertaken by proteins with specific functio...
متن کاملThe Influence of Spelling Errors on Content Scoring Performance
Spelling errors occur frequently in educational settings, but their influence on automatic scoring is largely unknown. We therefore investigate the influence of spelling errors on content scoring performance using the example of the short answer data set of the Automated Student Assessment Prize (ASAP). We conduct an annotation study on the nature of spelling errors in the ASAP dataset and util...
متن کاملASAP: Asynchronous Approximate Data-Parallel Computation
Emerging workloads, such as graph processing and machine learning are approximate because of the scale of data involved and the stochastic nature of the underlying algorithms. These algorithms are often distributed over multiple machines using bulk-synchronous processing (BSP) or other synchronous processing paradigms such as map-reduce. However, data parallel processing primitives such as repe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2016 شماره
صفحات -
تاریخ انتشار 2016